Distinct Molecular Profiles of Thyroid Nodules in Patients Under 21 Years of Age

Julio Ricarte-Filho, PhD,¹ J. Bryan Iorgulescu, MD, MPH,² Luz Castellanos, MD,² Steven G. Waguespack, MD,² Steven G. Waguespack, MD,³ Aime Franco, PhD¹ 1. Children's Hospital of Philadelphia, Philadelphia, PA, USA. 2. The University of Texas MD Anderson Cancer Center, Houston, TX, USA. 3. Veracyte, Inc, South San Francisco, CA, USA.

INTRODUCTION

- Thyroid nodules (TN) are rare in children and carry a higher risk of malignancy (~25%) compared to adults (~5-10%).¹
- The Afirma GSC is an exome-enriched RNAseq assay that sequences over 21,000 gene transcripts, allowing for the detection of gene expression, sequence variants, gene fusions, and gene expression pathways.²
- This study aimed to assess molecular differences related to malignancy in TN from patients < and \geq 21 yrs.

METHODS

- Cytologic and molecular differences were assessed in 177,227 TN samples tested by the Afirma Genomic Sequencing Classifier (GSC) through 12/2022.
- Genome-wide differential gene expression (DGE), mutation profiles, and expression signatures were compared between < and \geq 21 yrs patients using Fisher's exact and Wilcoxon rank tests.

RESULTS

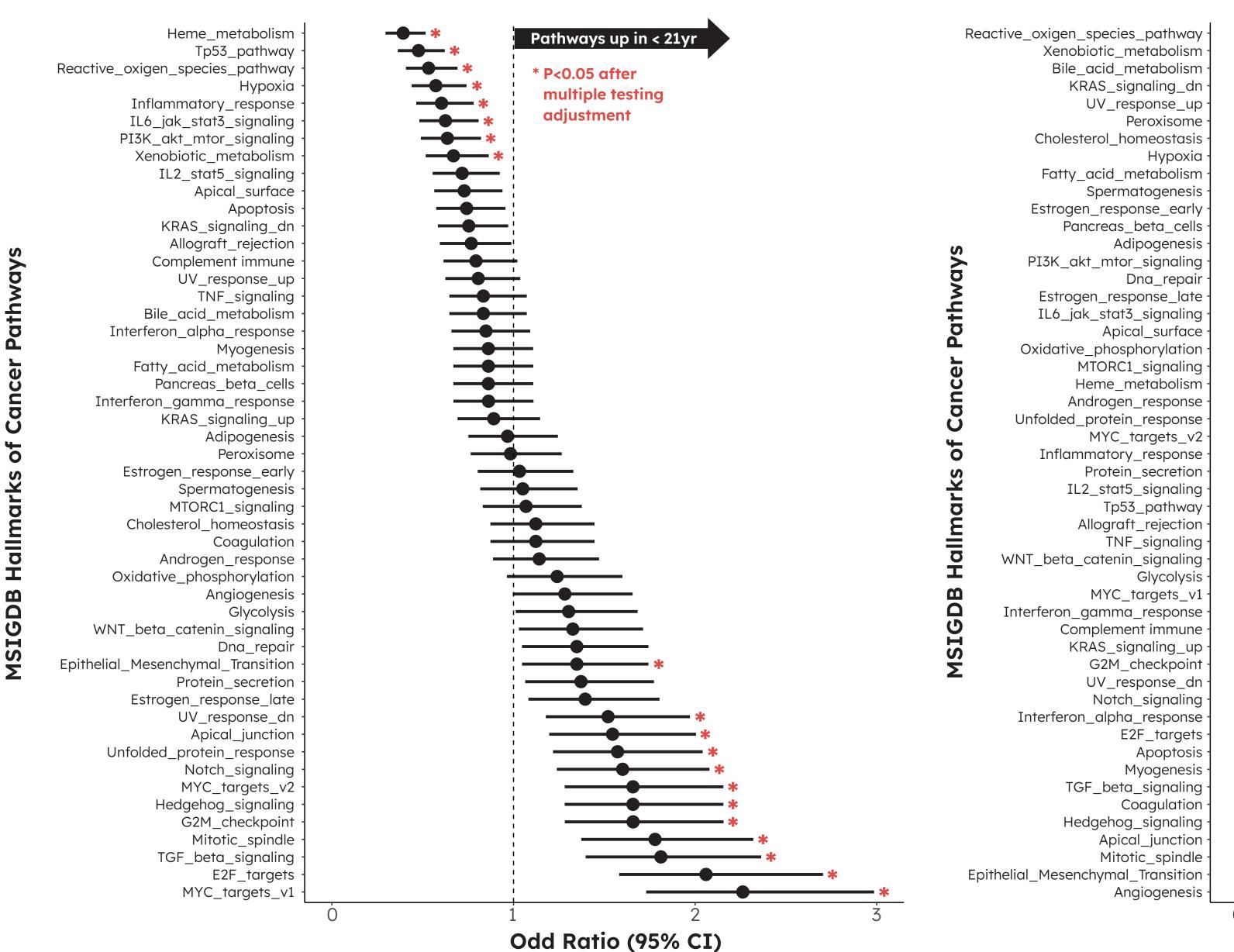
- There were 1,583 < 21 yrs patients (median age 18.9 yrs (IQR 17.1-20.0; 80.3% female)) and 175,644 \geq 21 yrs patients (median age 59.3 yrs (IQR) 46.0-69.0; 77.5% female)). When associating age group to Bethesda group, more Bethesda V&VI were found in the young patients (< 21 yr) compared to older patients (12.3% vs 4.4%, p value<2e-16). Within the young group, there was no significant enrichment of Bethesda V/VI in either gender (11.2% for male, 12.5% for female, p=0.6). Among cytologically indeterminate TN (ITN), 56% of < 21 yrs patients were GSC-(S)uspicious compared to 31% of \geq 21 yrs (p<0.001). (Table 1a-c).
- ITN GSC-S in < 21 yrs had overall more variants (44.8% vs 37%) and relative differences in certain molecular variants compared to older patients including: A higher rate of *BRAF*p.V600E, *DICER*1, and *TSHR*. There were less frequent HRAS and SPOP variants (Table 2).
- Amongst *DICER1* variants, those associated with poorly differentiated thyroid histology (codons 1709/1705/1813) were more frequently found in the < 21 yrs group (7.2% vs 0.7%, p<0.001).
- ITN GSC-S in < 21 yrs had more frequent fusions (13.6% vs 5.7%, p<0.001), particularly ETV6::NTRK3 (5%) and CCDC6::RET (2.7%), as well as ALK fusions (1%) (Table 3).
- Transcriptionally, < 21 yrs TN expressed higher ERK and MYC activity and cell cycle-related pathways (adjusted p value < 0.05). DGE identified overexpression of genes associated with cell cycle-related gene sets (e.g. KEGG cell cycle, G2-M). Among the subset of thyroid nodules with NTRK, RET, or ALK fusions, < 21 yrs was associated with higher expression of angiogenesis, epithelialmesenchymal transition, and cell cycle gene sets (adjusted p value < 0.05) (Figure 1).
- BRAF-RAS score (a marker of how BRAF-like a tumor is) was not different between the age groups.

TABLE 1 Demographic data

A. Bethesda category by age group (chi square p <0.0001).

	< 21 yr	≥ 21 yr
Total:	1,580	174,647
Bethesda III	1,077 (68.1%)	138,168 (78.7%)
Bethesda IV	309 (19.7%)	29,803 (17%)
Bethesda V	86 (5.4%)	3,800 (2.2%)
Bethesda VI	108 (6.8%)	3,876 (2.2%)
Bethesda V & VI	194 (12.3%)	7,676 (4.4%)

B. Bethesda category by age and sex. There was no significant association between sex and Bethesda in < 21yr.

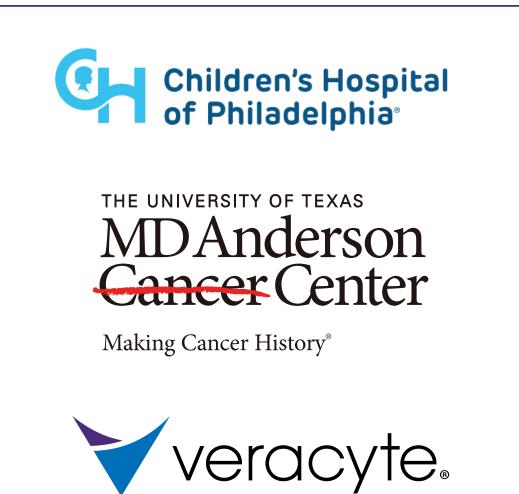

	< 21 yr		≥ 2	1 yr
	Male	Female	Male	Female
Total:	311	1,269	39,541	136,106
Bethesda III	212 (68.3%)	865 (68.1%)	30,321 (76.7%)	107,847 (79.2%)
Bethesda IV	64 (20.5%)	245 (19.4%)	7,227 (18.3%)	22,576 (16.6%)
Bethesda V	23 (7.4%)	63 (5%)	982 (2.5%)	2,818 (2.1%)
Bethesda VI	12 (3.8%)	96 (7.6%)	1,011 (2.6%)	2,865 (2.1%)
Bethesda V & VI	35 (11.2%)	159 (12.5%)	1,993 (5%)	5,683 (4.2%)

C. Afirma GSC (B)enign vs. < 21 yr ≥ 21 yr (S)uspicious rate by age GSC-B 606 (43.6%) 116,587 (69.4%) Bethesda group (chi square p <0.0001). III/IV GSC-S 780 (56.4%) 51,384 (30.6%)

FIGURE 1

Expression signatures patterns among GSC-S, Fusion positive cases, lesions with BRAFp.V600E alteration Expression to the right of the vertical line is upregulated in < 21 years relative to \geq 21 years and samples to the left of the line are downregulated.

A. All GSC-S



B. All ALK/RET/NTRK fusion C. All BRAFp.V600E Pathways up in < 21yr Pathways up in < 21yr Apical_surface -Bile_acid_metaboli Reactive_oxigen_species_pathway Complement immun KRAS signaling PI3K akt mtor signaling WNT_beta_catenin_signaling Estrogen_response_early -Notch signali KRAS_signaling_up Allograft_rejectio UV response d Epithelial_Mesenchymal_Transition -IL2_stat5_signaling Interferon_gamma_response -Xenobiotic metabolism MTORC1_signaline IL6_jak_stat3_signaling -Fatty_acid_metabolism Interferon_alpha_response + Androgen_response ------____ UV_response_ TNF signaling _____ Jnfolded_protein_response Hedgehog_signali Protein_secretio Apical_junction Spermatogenesis ____ ____ Estrogen_response_late -----Dxidative_phosphorylatior -----Mitotic spindle TGF_beta_signaling -----____**0**_____ G2M_checkpo **___** MYC_targets_ _____ **____** Cholesterol homeostasis Pancreas_beta_cells E2F_targets **—** MYC_targets_v1 · Odd Ratio (95% CI) Odd Ratio (95% CI)

Most frequent molecular variants in ITN, GSC-S nodules from patients < 21 vs \geq 21 years old < 21 yr (n=780) ≥ 21 yr (n=51,384) Chi-sq p-value **Total variant alterations** 350 (44.8%) 19,014 (37%) 7e⁻⁶ 13 (1.7%) 582 (1.1%) BRAFp.K601E 2,745 (5.3%) BRAFp.V600E 63 (8%) 0.001 EIF1AX 0.00 270 (0.5%) EZH1 0.00 26 (0.05%) 0.01 HRAS 4,745 (9.2%) 51 (6.5%) KRAS 13 (1.7%) 1,058 (2%) NRAS 113 (14.5%) 7,484 (14.6%) RET 2 (0.3%) 234 (0.5%) SPOP 0.00 438 (0.8%) 0.01 <2e⁻¹⁶ DICER1 77 (9.9%) 762 (1.5%) 0.0001 **TSHR** 20 (2.5%) 548 (1.07%) TP53 101 (0.2%) PIK3CA 64 (0.12%) PTEN 12 (0.02%) \mathbf{O} 90 (0.17%) OBSCN 4 (0.5%) 65 (0.12%) FAT1 116 (0.22%) JAK2

TABLE 2

TABLE 3

Most frequent fusions in < 21 vs \geq 21 years old patients with ITN GSC-S nodules

	< 21 yr (n=780)	≥ 21 yr (n=51,384)	Chi-sq p-value
Total fusions	106 (13.6%)	2,925 (5.69%)	<2e ⁻¹⁶
RET	21 (2.7%)	378 (0.73%)	2e ⁻⁹
CCDC6	14	203	
NCOA4	2	89	
ERC1	0	11	
SQSTM1	1	9	
NTRK3	39 (5%)	513 (1%)	<2e ⁻¹⁶
EML4	0	36	
ETV6	32	358	
SQSTM1	5	50	
RBPMS	0	35	
VIM	2	31	
NTRK1	2 (0.25%)	64 (0.12%)	
TPM3	1	35	
TPR	0	14	
PAXB	28 (3.6%)	1,308 (2.54%)	
PPARG	28	1,274	
GLIS3	0	27	
4 <i>LK</i>	8 (1%)	120 (0.23%)	5e -5
EML4	1	35	
STRN	5	33	
ITSN2	2	13	
BRAF	3 (0.38%)	281 (0.54%)	
AGK	0	48	
MKRN1	1	21	
SND1	0	76	
FGFR2::VCL	2 (0.25%)	45 (0.09%)	
MET::TFG	1 (0.13%)	27 (0.05%)	
MRPS16::TTC18	0	55 (0.1%)	
CREB3L2::PPARG	0	28 0.05%	

CONCLUSIONS

- Thyroid tumors from younger patients are unique by having more than double the prevalence of targetable fusions (*NTRK* and *RET*), high-risk somatic *DICER1* variants, and higher expression of cell cycle-related gene sets.
- Future investigation of these molecular differences may provide insights into the distinct clinical presentations of thyroid cancer between younger patients and adults.

REFERENCES

- 1. Francis GL, Waguespack SG, Bauer AJ, Angelos P, Benvenga S, Cerutti JM, Dinauer CA, Hamilton J, Hay ID, Luster M, Parisi MT, Rachmiel M, Thompson GB, Yamashita S; American Thyroid Association Guidelines Task Force. Management Guidelines for Children with Thyroid Nodules and Differentiated Thyroid Cancer. Thyroid. 2015 Jul;25(7):716-59. doi: 10.1089/thy.2014.0460. PMID: 25900731.
- 2. Walsh PS, Hao Y, Ding J, Qu J, Wilde J, Jiang R, Kloos RT, Huang J, Kennedy GC. Maximizing Small Biopsy Patient Samples: Unified RNA-Seq Platform Assessment of over 120,000 Patient Biopsies. J Pers Med. 2022 Dec 22;13(1):24. doi: 10.3390/jpm13010024. PMID: 36675685.